Bài tập toán học ôn luyện theo Level

KHÁI NIỆM PHÉP DỜI HÌNH VÀ HAI HÌNH BẰNG NHAU   A.LÍ THUYẾT CƠ BẢN.  1. Định nghĩa. - Phép biến hình là phép dời hình bảo toàn khoảng cách giữa hai điểm bất kì Vậy nếu  là phép dời khi và chỉ khi. - Nhận xét: + Các phép biến hình : Tịnh tiến, đối xứng trục, đối xứng tâm và phép quay là các phép dời hình. + Thực hiện liên tiếp các phép dời hình thì cũng được một phép dời hình. 2. Tính chất của phép dời hình. Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự giữa ba điểm đó. Biến một đường thẳng thành một đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng bằng nó. Biến tam giác thành tam giác bằng nó , biến một góc thành góc bằng góc đã cho. Biến đường tròn thành đường tròn có cùng bán kính. 3. Định nghĩa hai hình bằng nhau. Hai hình được gọi là bằng nhau nếu có một phép dời hình  biến hình này thành hình kia. B. BÀI TẬP. Bài toán 01: XÁC ĐỊNH ẢNH CỦA MỘT HÌNH QUA PHÉP DỜI HÌNH. Phương pháp: Dùng định nghĩa, biểu thức tọa độ và các tính chất của các phép dời hình cụ thể (tịnh tiến, đối xứng trục, đối xứng tâm và phép quay ) có trong bài toán. Ví dụ 1. Cho đường thẳng . Viết phương trình của đường thẳng  là ảnh của  qua phép dời hình có được bằng cách thược hiện liên tiếp phép đối xứng tâm và phép tịnh tiến theo vec tơ . A..  B.. C.. D.. Lời giải: Gọi  là phép dời hình bằng cách thực hiện liên tiếp phép đối xứng tâm  và phép tịnh tiến . Gọi . Do  song song hoặc trùng với  do đó phương trình của  có dạng . Lấy  ta có . Lại có  nên . Mà . Vậy . Ví dụ 2. Cho hình vuông  có tâm . Trên tia  lấy điểm  sao cho . a) Xác định một phép dời hình biến  thành  và biến  thành . b) Dựng ảnh của hình vuông  qua phép dời hình này. Lời giải: a) Gọi  là phép đối xứng qua đường trung trực  của ,  là phép đối xứng qua đường trung trực  của của . Khi đó  biến  thành  và  biến  thành . Từ đó phép dời hình  biến  thành  . do đó . Mặt khác phép dời hình có được bằng cách thực hiện liên tiếp hai phép đối xứng trục cắt nhau tại là phép quay tâm  góc quay  ( do ). Vậy phép dời hình này chính là . b)  biến các điểm  thành các điểm ,  biến các điểm thành các điểm . Do đó  biến các điểm  thành các điểm . Vậy ảnh của hình vuông  là hình vuông  đối xứng với hình vuông  qua . Bài toán 02: CHỨNG MINH HAI HÌNH BẰNG NHAU. Phương pháp: Để chứng minh hai hình bằng nhau ta cần chỉ ra một phép dời hình biến hình này thành hình kia. Ví dụ 1. Cho hai tam giác  và  có các đương cao  và  sao cho  các góc  đều là góc tù. Chứng minh hai tam giác  và  bằng nhau. Lời giải: Vì các góc  và  là các góc tù nên các góc  là các góc nhọn. Suy ra  ở giữa  và ,  ở giữa  và . Vì hai tam giác vuông  và  bằng nhau nên có phép dời hình  biến  lần lượt thành các điểm . Khi đó  biến thành . Vậy phép dời hình  biến tam giác thành tam giác  nên hai tam giác này bằngnhau. Ví dụ 2. Chứng minh rằng hai tam giác bằng nhau nếu có các đường tròn nội tiếp bằng nhau, đồng thời khoảng cách giữa tâm đường tròn nội tiếp và bàng tiếp của hai tam giác đó cũng bằng nhau. Lời giải: Giả sử  lần lượt là tâm đường tròn ngoại tiếp tam giác  và tâm đường tròn bàng tiếp góc ; tam giác  có đường tròn nội tiếp  và đường tròn bàng tiếp góc  là  và . Vì  nên tồn tại phép dời hình :  khi đó . Mặt khác  biến cặp tiếp tuyến chung ngoài và  của  và  thành cặp tiếp tuyến chung ngoài  và  của  và ( hoặc  và ) còn tiếp tuyến  phải biến thành tiếp tuyến  suy ra  hoặc , hay hai tam giác  và bằng nhau.  

Thống kê thành viên
Tổng thành viên 17.803
Thành viên mới nhất qhuy22
Thành viên VIP mới nhất Alex308VIP

Mini games


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay




Mọi người nói về thanhvinh.edu.vn


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay
(Xem QUYỀN LỢI VIP tại đây)

  • BẠN NGUYỄN THU ÁNH
  • Học sinh trường THPT Trần Hưng Đạo - Nam Định
  • Em đã từng học ở nhiều trang web học trực tuyến nhưng em thấy học tại thanhvinh.edu.vn là hiệu quả nhất. Luyện đề thả ga, câu hỏi được phân chia theo từng mức độ nên học rất hiệu quả.
  • BẠN TRẦN BẢO TRÂM
  • Học sinh trường THPT Lê Hồng Phong - Nam Định
  • Baitap123 có nội dung lý thuyết, hình ảnh và hệ thống bài tập phong phú, bám sát nội dung chương trình THPT. Điều đó sẽ giúp được các thầy cô giáo và học sinh có được phương tiện dạy và học thưc sự hữu ích.
  • BẠN NGUYỄN THU HIỀN
  • Học sinh trường THPT Lê Quý Đôn - Hà Nội
  • Em là học sinh lớp 12 với học lực trung bình nhưng nhờ chăm chỉ học trên thanhvinh.edu.vn mà kiến thức của em được củng cố hơn hẳn. Em rất tự tin với kì thi THPT sắp tới.

webhero.vn thietkewebbds.vn