Nhiệm vụ bài học là số điểm tối thiểu mà em cần đạt được để có thể:
- Xem được đáp án và lời giải chi tiết của bài học.
- Mở khóa bài học tiếp theo trong cùng Level hoặc mở Level tiếp theo.
Nếu chưa vượt qua được điểm nhiệm vụ, em phải làm lại bài học để rèn luyện tính kiên trì cũng như sự cố gắng nỗ lực hoàn thành bài tập, giúp kỹ năng làm bài được tốt hơn.
Lưu ý:Với mỗi bài học bạn chỉ được cộng điểm thành tích 1 lần duy nhất.Công thức tính điểm thành tích:
Tỉ lệ % = (số đáp án đúng / tổng số câu hỏi) * 100.
Điểm thành tích:
* Với bài làm có tỉ lệ đúng > 80% : +5 điểm
* Với bài làm có tỉ lệ đúng >= 70% và <= 80% : +3 điểm
* Với bài làm có tỉ lệ đúng >= 60% : +2 điểm
Thành viên VIP được +1 cho điểm thành tích đạt được
Cho hình chóp S.ABCD có đáy là tứ giác lồi, O là giao điểm của hai đường chéo AC và BC. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng qua O, song song với AB và BC. Thiết diện đó là hình:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD và BC; G là trọng tâm ∆BCD. Khi đó, giao điểm của đường thẳng MG và mặt phẳng (ABC) là:
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và AC. E là điểm trên cạnh CD với ED=3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là:
Cho đường thẳng a và mặt phẳng (P). Trong các mệnh đề sau, mệnh đề đúng là
Cho đường thẳng a song song với mặt phẳng (P). Trong các mệnh đề sau, mệnh đề sai là
Cho hình chóp tứ giác S.ABCD có đáy ABCD là một hình bình hành. Một điểm M di động trên cạnh SA (khác S và A). Qua CM ta dựng một m ặt phẳng (α) song song với BD. Thiết diện của hình chóp cắt bởi mặt phẳng (α) là:
Cho hình vuông ABCD và tam giác đều SAB nằm trong hai mặt phẳng khác nhau. Gọi M là điểm di động trên đoạn AB. Qua M vẽ mặt phẳng (α) song song với (SBC). Thiết diện tạo bởi (α) và hình chóp S.ABCD là hình
Cho hình tứ diện ABCD. Gọi M, N lần lượt là trung điểm của cạnh AB và AC. Xét vị trí tương đối của đường thẳng MN và mặt phẳng (BCD). Gọi D là giao tuyến của hai mặt phẳng (DMN) và (DBC). Xét vị trí tương đối của d và mặt phẳng (ABC)
Cho lăng trụ tam giác ABC.A1B1C1. Gọi M là trung điểm AB1. Thiết diện tạo bởi mặt phẳng (α) qua M và (α) song song với A1C, BC1 với lăng trụ là hình:
Cho lăng trụ tam giác ABC.A1B1C1. Gọi G và G1 là trọng tâm của đáy ABC và A1B1C1 , O là trung điểm GG1. Thiết diện tạo bởi mặt phẳng (ABO) với lăng trụ là hình:
Thành viên đã làm bài (0)
Chưa có thành viên làm bài. Bạn hãy là người đầu tiên.
Phản hồi - đóng góp ý kiến
Không được lạm dụng SPAM hệ thống - Nếu vi phạm: Thành viên thường (xóa nick), Thành viên VIP (khóa nick 10 - 50 ngày).
Mã xác nhận *
Gửi câu hỏi tới kênh thảo luận - Forum
Không được lạm dụng SPAM hệ thống - Nếu vi phạm: Thành viên thường (xóa nick), Thành viên VIP (khóa nick 10 - 50 ngày).
Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay (Xem QUYỀN LỢI VIP tại đây)
BẠN NGUYỄN THU ÁNH
Học sinh trường THPT Trần Hưng Đạo - Nam Định
Em đã từng học ở nhiều trang web học trực tuyến nhưng em thấy học tại thanhvinh.edu.vn là hiệu quả nhất. Luyện đề thả ga, câu hỏi được phân chia theo từng mức độ nên học rất hiệu quả.
BẠN TRẦN BẢO TRÂM
Học sinh trường THPT Lê Hồng Phong - Nam Định
Baitap123 có nội dung lý thuyết, hình ảnh và hệ thống bài tập phong phú, bám sát nội dung chương trình THPT. Điều đó sẽ giúp được các thầy cô giáo và học sinh có được phương tiện dạy và học thưc sự hữu ích.
BẠN NGUYỄN THU HIỀN
Học sinh trường THPT Lê Quý Đôn - Hà Nội
Em là học sinh lớp 12 với học lực trung bình nhưng nhờ chăm chỉ học trên thanhvinh.edu.vn mà kiến thức của em được củng cố hơn hẳn. Em rất tự tin với kì thi THPT sắp tới.